Интерфейс.Новые направления в проектировании компьютерных систем


Закон Хика


Перед тем как переместить курсор к цели или совершить любое другое действие из набора множества вариантов, пользователь должен выбрать этот объект или действие. В законе Хика утверждается, что когда необходимо сделать выбор из n вариантов, время на выбор одного из них будет пропорционально логарифму по основанию 2 от числа вариантов плюс 1, при условии, что все варианты являются равновероятными. В этом виде закон Хика очень похож на закон Фитса:

Время (мс) = a + b \log_2(n+1)

Если вероятность 1-го варианта равна p(i), то вместо логарифмического коэффициента используется

\sum_i p(i) \log_2(1/p(i)+1)

Коэффициенты, используемые в выражении закона Хика, в большой степени зависят от многих условий, включая то, как представлены возможные варианты, и то, насколько хорошо пользователь знаком с системой. (Если варианты представлены непонятным образом, значения a и b возрастают. Наличие навыков и привычек в использовании системы снижает значение b.) Мы не будем рассматривать эти зависимости — для нас важно, что для принятия того или иного решения требуется время; что для принятия сложных решений требуется больше времени, чем для принятия простых решений; и что взаимосвязь является логарифмической. При отсутствии более точных данных для проведения быстрых и приблизительных вычислений мы можем воспользоваться теми же значениями a и b, которые использовали для закона Фитса.

При использовании любых положительных и ненулевых значений a и b из закона Хика следует, что предоставление пользователю сразу нескольких вариантов одновременно обычно является более эффективным, чем организация тех же вариантов в иерархические группы. Выбор из одного меню, состоящего из 8 элементов, производится быстрее, чем из двух меню, состоящих их 4 элементов каждое. Если все элементы могут быть выбраны с равной вероятностью и если не учитывать время, необходимое для открытия второго меню (которое, конечно, еще более увеличило бы время для интерфейса, состоящего из двух меню), то сравнение времени для выбора одного элемента из восьми (a + b \log_2 8) с удвоенным временем для выбора одного элемента из четырех 2 (a + b \log_2 4) покажет, что

а + 3b < 2(а + 2b)

поскольку \log_2 8 = 3, a \log_2 4 = 2, а также поскольку a<2a и 3b<4b.

Это согласуется с данными, полученными в экспериментах со структурами меню (см.


Начало  Назад  Вперед



Книжный магазин